Polarographische Untersuchungen in Aceton

Von

0. Duschek, V. Gutmann und P. Rechberger

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien, Österreich

Mit 3 Abbildungen

(Eingegangen am 16. Oktober 1973)

Polarographic Studies in Acetone

In acetone the perchlorates of a number of alkaline, alkaline earth and transition metal-ions have been investigated at the DME and, if necessary, at the RPE. The half-wave potentials in 0.1m-TEAP-solutions at 25 °C have been referred to the BBCr(I)-scale. The nature of the limiting currents, the diffusion coefficient, the diffusion current constants, the degree of reversibility and the influence of water upon the $E_{\frac{1}{2}}$ -values are reported. The half-wave potentials of this paper complete by this time existing DN— $E_{\frac{1}{2}}$ -graphs and confirm the donicity-concept.

Einleitung

In Aceton (AC) (Donizität DN = 17) wurden trotz seines guten Lösevermögens nur wenige polarographische Untersuchungen durchgeführt^{1, 2}. Erst seit Molekularsiebe zur Verfügung stehen, ist eine intensive Trocknung ohne wesentliche, durch Säuren und Basen katalysierte, Kondensation möglich³.

Die Unterschiede der Halbwellenpotentiale eines Metallions in verschiedenen Lösungsmitteln beruhen auf den unterschiedlichen freien Solvatationsenthalpien⁴, die $E_{\frac{1}{2}}$ werden mit steigender Donizität $(DN)^{5, 6}$ nach negativeren Potentialen verschoben⁷⁻¹⁰. Will man die Halbwellenpotentiale eines Ions in verschiedenen Lösungsmitteln vergleichen, muß man das zwischen den Lösungen auftretende Diffusionspotential entweder durch Salzbrücken¹¹ unterdrücken oder durch Bezug auf ein lösungsmittelunabhängiges Redoxsystem umgehen. In dieser Arbeit wurde von letzterer Methode Gebrauch gemacht, alle angeführten $E_{\frac{1}{2}}$ -Werte sind, wenn nicht anders angegeben, auf Bisbiphenylchrom [BBCr(I)] bezogen. Die Eignung von BBCr(I)/

BBCr(0) sowie von Ferrocen/Ferricenium als Bezugsysteme ist in letzter Zeit von Duschek und Gutmann¹² zusammenfassend diskutiert worden.

Experimenteller Teil

Zellen, Elektroden und Meßeinrichtungen für die Oszillo- und Gleichstrompolarographie wurden bereits beschrieben^{13, 14}.

AC (p. A. Merck) wurde über 3 A-Molekularsieb 24 Stdn. vorgetrocknet und dann durch eine mit Molekularsieb gefüllte Säule langsam laufengelassen. Um etwaige Kondensationsprodukte abzutrennen, wurde durch eine Füllkörperkolonne mit einem Rücklaufverhältnis von 20 rektifiziert. Direkte Wasserbestimmung nach Karl Fischer ist nicht möglich, da Ketalbildung eintritt^{15, 16}. Nach der Absolutierung verschwindet im IR-Spektrum die breite OH-Bande zwischen 3600 und 3460 cm⁻¹, es darf also auf gute Wirksamkeit des Molekularsiebes geschlossen werden. Die Herstellung von Tetraäthylammoniumperchlorat $(T\ddot{A}AP)$ und BBCr(I) findet sich mehrfach beschrieben^{13, 17, 18}. LiClO₄ wurde bei 150°, KClO₄ bei 120° unter Normaldruck, NaClO₄ bei 130°, die Perchlorate des Mg(II), Ca(II), Sr(II) bei 250°, des Ba(II) bei 170° im Ölpumpenvakuum aus den Hydraten erhalten. Die Hexahydrate der Perchlorate des Zn(II) und Cd(II) wurden bei 100°, des Cu(II) bei 90° und des Cd(II) bei 30° im Ölpumpenvakuum bis zur Dihydratstufe entwässert, in AC gelöst und mehrmals durch eine mit 3 A-Molekularsieb gefüllte Säule laufengelassen. Mn(II) und Cu(II)-Solvate mußten ob ihrer schlechten Kristallisierbarkeit als Lösungen eingesetzt werden. Komplexometrische Titration ergab, daß sowohl Zn(II)wie Cd(II)-Solvat als $Zn(ClO_4)_2 \cdot 4AC$ bzw. Cd(ClO₄)₂ $\cdot 4AC$ kristallisieren. Co(ClO₄)₂ · 7/3 AC und Ni(ClO₄)₂ · 4 AC standen zur Verfügung¹⁹.

AgClO₄ wurde bei 140° aus dem Monohydrat erhalten. RbClO₄ und CsClO₄ wurden durch Umsetzen der Chloride mit AgClO₄ in wäßr. Lösung, Filtrieren, Einengen und Trocknen bei 100° im Vak. gewonnen.

Cu(II) wurde in Aceton/TÄAP mit blankem Kupferdraht zu schwerlöslichem, graugrünem Cu(I)ClO₄ reduziert. Die so erhaltene, an Cu(I) gesätt. Lösung wurde polarographiert.

Alle Messungen erfolgten bei 25 °C. Die Halbwellenpotentiale $E_{\frac{1}{2}}$ an der RPE wurden auf \pm 50 mV genau für 0,2 mMol/l angegeben¹⁴.

Als Reversibilitätskriterien dienten die logarithmische Analyse oder ihre vereinfachte Form, der Tomes-Test, Kalousek-Polarogramme, Anodic Stripping und die Oszillopolarographie.

Zur Prüfung auf Gültigkeit der Ilković-Gleichung wurde die Abhängigkeit der Stufenhöhe von der Konzentration und von der Wurzel aus der um den Quecksilberrückdruck korrigierten Quecksilberniveauhöhe herangezogen.

Ergebnisse

Alle Grenzströme erwiesen sich als diffusionsbedingt. Die sonst bei Mn(II) häufigen Adsorptionswellen können nicht beobachtet werden; an der DME geben Ag(I)-Ionen bei Konzentrationen größer als 0,3 mMol/l ein Maximum erster Art.

Alkaliionen: Außer Li(I) werden die betrachteten Alkaliionen reversibel zu den Amalgamen reduziert, die Reduktion des Li(I) er-

63

$(0,1m/T\ddot{A}AP)$
$n \ AC$
Meßergebnisse i
Tabelle 1.

Depol. E_{j_2} ,	$E_{\gamma_2},$	$E_{\gamma_2},$	20	teig. d			Reversib.	
geg . $BB\mathrm{Cr}(\mathrm{I})$	geg. Rb(I), diese Arb.	geg. Rb(I) Lit. ¹ , ²	log. Anal. (mV)	I_D	$D\cdot 10^{6}, \ { m cm}^{2}/{ m sec}$	oszillo- pol.	Kalousek- umschalter	Anodic Stripping
T.i(T) 1.4	0.104	.]	85	2.8	21.2	ಣ	irr.	irr.
Na(I) - 1.224	+ 0.072	+ 0.07	60	, co co	29,7	rev.	rev.	rev.
$\mathbf{K}(\mathbf{I}) = 1, 28$	+0,016	0,0	59	3,07	25,8	rev.	rev.	rev.
$R\dot{b}(I) - 1,296$	0,0	0,0	59	3,1	26,4	rev.	rev.	rev.
Cs(I) - 1, 27	0,026		59	3,1	26,4	rev.	rev.	rev.
Mg(II) - 1,05 bis								
Ca/TI - 1,07 b	$0,226-0,246^{\mathrm{b}}$	0, 22	$60^{ m b}$	4,9	16, 3	irr.	irr.	irr.
$Ca(11) = 1,27^{\text{b}}$	$0.126-0.026^{ m b}$.	95b	4.5	13.8	irr.	irr.	irr.
Sr(II) -1, 23	+ 0,066		40	4,4	13,2	ಣೆ	irr.	irr.
Ba(II) - 1,075	+ 0.221	ļ	35	4,96	16,8	rev.	irr.	irr.
TI(I) + 0.41	+ 1,706]	58	3,16	27, 2	rev.	rev.	rev.
Zn(II) + 0.13	+ 1,426		38	5,0	17	rev.	rev.	irr.
Cd(II) + 0.51	+ 1,805	+ 1,79	35	4,7	15	rev.	rev.	irr.
Mn(II) - 0.41	+ 0.886		60	4,6	14,4	đ	irr.	irr.
Ferrocen $+ 1,13$	+ 2,426		59	4,2	48	rev.	rev.	
BBCr(I) 0,0	+ 1,296		60	2,7	19,9	rev.	rev.	[
Cu II/I + 1.23	+ 2,526	+ 2,5	60	2,84	22	ы	rev.	1
${ m Cu}~{ m I/0}+1,02$	+ 2,316	+ 2,28	60	2,81	21,6	ບ	řθV.	q
Cu II/0 + 1.125e	+ 2,421e	$+ 2,39^{e}$						(and the second se
Ag(I) + 1,34f	+ 2,6361		NO ALMONYMUM	3,2	28			
Co(II) 0,0	+ 1,296s		100	5,0	17,0	irr.	irr.	irr.
$Ni(II) + 0.36 \varepsilon$	+ 1,656		80	5,2	18,5	irr.	irr.	irr.
a TX7. advection to the discrete	o naab anadicaba Div	achmitte. Die	loW onëlemon	9 . vo[بمطغمنا فمست	diada ain a	andicahan Dinas	

* Weder karhousche noch anouische Einschnitte; ^v irreguare Wehen; ^v zwei karhouische, ein anouischer Einschnitt; ^v un-deutliches anodisches Maximum; ^e nach Lutherscher Regel berechnet; ^t an der RPE bei 0,2 mMol/l; ^g Halbwellenpotential konzentrationsabhängig (e = 0,1 mMol/l).

64

O. Duschek u. a.:

weist sich allen Kriterien zufolge als irreversibel; oszillopolarographisch können weder ein kathodischer noch ein anodischer Einschnitt erhalten werden. Bei allen Alkaliionen beeinflußt Wasser das $E_{\frac{1}{2}}$ nur geringfügig.

Erdalkaliionen: Wie auch Ca(II) neigt Mg(II) zur Ausbildung irregulärer, verzogener Wellen oder Doppelwellen. Bei Konzentrationen unter 0,2 mMol/l gibt Mg(II) unsymmetrische, im oberen Kurventeil flachverzogene Polarogramme mit einem Halbwellenpotential von -1,07 V, die logarithmische Analyse des steilen, etwa 75% der gesamten Welle umfassenden Kurventeils liefert Steigungen um 70 bis 80 mV. Höhere Konzentrationen erbringen reguläre, zentrosymmetrische Wellen mit einem Halbwellenpotential von - 1.05 V und einer logarithmischen Analyse von 60 mV. Bezogen auf die Rb(I)-Skala entsprechen diese Werte 0,226 bis 0,246 V, die mit dem von Coetzee und Siao² angegebenen Wert (0,22 V) fast übereinstimmen. Allerdings berichten die Autoren bei Konzentrationen um 1 mMol/l von verzogenen Wellen, während in dieser Arbeit bei solchen Konzentrationen zentrosymmetrische, wenn auch irreversible Wellen erhalten wurden. Wasserzusatz erhöht den irreversiblen Charakter der Mg(II)-Reduktion (Steigung der logarithmischen Analyse 95 mV bei 1 Vol% H_2O), bei 6 Vol% treten flache Doppelwellen auf, die etwa um 0,1 V gegenüber dem Polarogramm in wasserfreier Lösung zu negativeren Potentialen verschoben sind.

Noch komplizierter verhält sich das Ca(H)-Ion: Bis zu Konzentrationen von 0,2 mMol/l tritt eine einzige symmetrische, irreversible Welle (log. Analyse 94 mV) mit einem Halbwellenpotential von — 1,27 V auf. Bei steigenden Konzentrationen bis etwa 0,3 mMol/l verläuft der obere Kurventeil flach verzogen, das Halbwellenpotential steigt auf — 1,17 V an. Höhere Konzentrationen erbringen Doppelwellen. Wasserzusatz führt die Doppelwelle auf ein symmetrisches, reguläres Polarogramm zurück und senkt die polarographische Überspannung (3 Vol% H₂O: log. Analyse 50 mV, $E_{\frac{1}{2}}$ — 1,12 V), die Welle bleibt aber irreversibel. Weiter steigende Wassergehalte verstärken die polarographische Überspannung (7 Vol%: log. Analyse 80 mV, $E_{\frac{1}{2}}$ — 1,17 V).

Bei Sr(II) und Ba(II) liegen die Verhältnisse einfacher, die Wellen sind stets zentrosymmetrisch. Sr(II) ließ sich oszillopolarographisch trotz wiederholter Versuche nicht fassen. Von den Erdalkaliionen kommt Ba(II) noch am ehesten einer reversiblen Reduktion nahe, der Kalousek-Umschalter liefert ein mäßig irreversibles Kommutatordiagramm mit einer schleifenden anodischen Welle, im Oszillopolarogramm erscheinen kathodischer und anodischer Einschnitt beim selben Potential übereinander. Wassergehalte bis zu 3 Vol% lassen das $E_{\frac{1}{2}}$ auf --1,27 Vsinken, beeinflussen aber nicht den regulären Verlauf der Welle.

65

Thallium(I): Die Reduktion zum Amalgam läuft allen Tests zufolge reversibel ab. 2,5 Vol% Wasser haben auf das Halbwellenpotential keinen Einfluß, 9 Vol% verschieben das $E_{\frac{1}{2}}$ auf + 0,39 V.

Ferrocen: Die gut ausgebildeten, reversiblen, anodischen Wellen haben ein $E_{\frac{1}{2}}$ von + 1,13 V, Wassergehalte kleiner als 3 Vol% haben keinen Einfluß auf das Halbwellenpotential, bei größeren Wasserkonzentrationen verlagert sich die anodische Hg-Auflösung nach negativeren Potentialen; je größer die Wasserkonzentration, um so näher rückt die Hg-Welle an die Ferrocen-Stufe.

BBCr(I): Neben der zweistufigen anodischen Jodidwelle (Bildung von HgJ₃⁻ bzw. HgJ₂^{1, 2}) tritt eine kathodische, der Reduktion des BBCr(I) entsprechende, reversible Welle auf. Bis zu 3 Vol% Wasser ist kein Einfluß auf das Halbwellenpotential zu beobachten.

Zink(II), Cadmium(II): Mit Hilfe des Kalousek-Umschalters und der Oszillopolarographie wird bei beiden Ionen ein reversibler Zweielektronenübergang festgestellt. Am hängenden Tropfen konnte jedoch kein anodisches Maximum festgestellt werden. Bedeutsam ist der Wassereinfluß: Bereits Wassergehalte von 0,8% senken das $E_{\frac{1}{2}}$ des Zn(II) um 0,4 V auf — 0,27 V, des Cd(II) auf + 0,35 V; in beiden Fällen werden stark irreversible Polarogramme erhalten (log. Analyse 100—150 mV).

Mn(II): In AC sind die irreversiblen Wellen gut ausgebildet. Oszillopolarographisch ist Mn(II) nicht zu erfassen. Der recht erhebliche Wassereinfluß (0,9 Vol%: $E_{\frac{1}{2}} - 0.56$ V, 1.8%: -0.63 V, 4.3%: -0.69 V) scheint mehr durch die verstärkte Solvatation des Mn(II) als durch die Erhöhung der polarographischen Überspannung (log. Analyse bleibt bei 60 mV) gegeben zu sein.

Kobalt(II): Co(II)-Ionen zeigen flache, irreversible kathodische Wellen, deren $E_{\frac{1}{2}}$ von der Depolarisatorkonzentration abhängt. Mit steigenden Konzentrationen verschiebt sich das Halbwellenpotential nach negativeren Werten: 0,1 mMol/l: 0,0 V; 0,25 mMol/l: — 0,025 V; 0,35 mMol/l: — 0,055 V; 0,45 mMol/l: — 0,07 V; 0,65 mMol/l: — 0,08 V.

Im Oszillopolarogramm tritt zwar ein kathodischer Einschnitt auf, anodisch scheint nur eine über einen weiten Potentialbereich sich erstreckende flache Einbuchtung auf.

Besonders ausgeprägt ist der Wassereinfluß auf das Polarogramm: Während der Grad an Irreversibilität etwa gleich bleibt, tritt eine enorme Verschiebung des $E_{\frac{1}{2}}$ ein; bei 0,5 Vol% sinkt es auf -0,31 V, bei 0,9, 1,8, 2,7 bzw. 10% auf -0,42, -0,58, -0,61 bzw. -0,81V.

Nickel(II): Die Polarogramme sind ähnlich irreversibel wie bei Co(II), doch treten bei Konzentrationen über 0.2 mMol/l verzerrte Stufen oder Doppelwellen auf. Das Halbwellenpotential beläuft sich bei einer Konzentration von 0.05 mMol/l auf + 0.45 V, bei 0.1 mMol/l

auf + 0,36 V. Bereits ein Wassergehalt von 1 Vol% läßt das $E_{\frac{1}{2}}$ auf - 0,75 V sinken. Weitere Erhöhung des Wassergehaltes bewirkt dann nur mehr unwesentliche Änderungen.

Kupfer(II), Kupfer(I): Cu(II) wird in 2 Stufen zu Cu(0) reduziert; die bei positiveren Potentialen liegende Welle, entsprechend der Reduktion zu Cu(I), mit einem $E_{\frac{1}{2}}$ von + 1,23 V und die der Reduktion des Cu(I) zu Cu(0) zugehörige Welle mit einem $E_{\frac{1}{2}}$ von + 1,02 V

Abb. 1. Cu(I) an der rotierenden Platindrahtelektrode

weisen beide reversibles Verhalten auf. Im Oszillopolarogramm erscheinen zwei kathodische und ein anodischer Einschnitt. Schon ein Wassergehalt von 1 Vol% läßt die Cu(II/I)-Welle fortfallen, es tritt eine einzige, schwach irreversible Welle mit einer log. Analyse von 45 mV und einem E_{γ_2} von + 1,02 V auf (E_{γ_2} bei 3 Vol% + 0,91 V).

An der RPE werden die für Cu(Π)-Doppelwellen typischen Polarogramme⁷ erhalten.

In an Cu(I) gesättigten Lösungen geht an der DME die zur Oxidation zu Cu(II) gehörige anodische Welle in der Hg-Auflösung unter. An der RPE wird sowohl die Reduktionswelle zu Cu(0) als auch die Oxidationswelle zu Cu(II) erhalten (Abb. 1). Die Reduktion von Cu(II) mit Kupferdraht verläuft demnach praktisch vollständig.

Silber(I): An der DME ist nur der Diffusionsgrenzstrom, nicht aber die Welle selbst faßbar. An der RPE tritt eine kathodische Welle

O. Duschek u. a.:

mit einem $E_{\frac{1}{2}}$ von + 1,34 V bei 0,2 mMol/l auf. Wird die *RPE* nach Erreichen des Grenzstoms in positiver Richtung polarisiert, erhält man das anodische Maximum der Ag(0)-Auflösung⁷.

Diskussion

Die Reduktion der Alkaliionen und des Ba(II) in einer Reihe von Lösungsmitteln wurde ausführlich erörtert²⁰ und die $E_{\frac{1}{2}}$ gegen die

Abb. 2. $E_{\frac{1}{2}}$ von Tl(I), Zn(II), Cd(II) als Funktion der Donizität (*BF* Benzoylfluorid, *NM* Nitromethan, *NB* Nitrobenzol, *BN* Benzonitril, *AN* Acetonitril, *PDC* Propandiol-1,2-carbonat, *ES* Äthylensulfit, *DMF* Dimethylformamid, *DMSO* Dimethylsulfoxid)

DN der Lösungsmittel graphisch dargestellt^{9, 20}. $E_{\frac{1}{2}}/DN$ -Diagramme für Mg(II), Ca(II) und Sr(II)²¹ können nur mit Vorbehalt aufgestellt werden, da diese Ionen von Lösungsmittel zu Lösungsmittel verschiedene polarographische Überspannungen aufweisen.

Das Tl(I)-Reduktionspotential in AC fügt sich gut in das $E_{\frac{1}{2}}/DN$ -Diagramm ein (Abb. 2). Der flache Kurvenverlauf bei niedriger DNähnelt dem von weichen Metallionen¹⁴, die geringe Kurvenneigung bei hoher DN erinnert an die Verhältnisse bei den Alkaliionen^{7, 9, 20}.

Zn(II) und Cd(II) zeigen quasireversibles Verhalten im Sinne von Parsons und Hale²²; das Fehlen des anodischen Maximums am hängenden Tropfen dürfte auf eine der Reduktion nachfolgende langsame Inaktivierungsreaktion zurückzuführen sein. Auch die für Zn(II) und Cd(II) in AC gefundenen Daten passen gut in bereits vorhandene $E_{\frac{1}{2}}/DN$ -Diagramme, deren steiler, linearer Verlauf für den stark kovalenten Charakter der Metallion—Solvatbindung spricht (Abb. 2). Obwohl das $E_{\frac{1}{2}}$ irreversibler Prozesse von kinetischen Parametern abhängt²³, erhält man doch innerhalb gewisser Toleranzen für Co(II) und Mn(II) eine fast lineare Abhängigkeit von der DN, die Werte

Abb. 3. $E_{\frac{1}{2}}$ von Mn(II), Co(II), Ni(II) als Funktion der Donizität (Abkürzungen wie bei Abb. 2)

in AC fügen sich mit DN = 17 gut in das bisherige experimentelle Material ein (Abb. 3).

Der starke Wassereinfluß auf das $E_{\frac{1}{2}}$ von Zn(II), Cd(II), Mn(II), Co(II) und Ni(II) wurde schon in früheren Arbeiten^{7, 9} durch Einführung der "Bulkdonizität" erklärt. Die in 2 Stufen erfolgende Reduktion des Cu(II) wird durch die geringe Löslichkeit des Cu(I)ClO₄ in *AC* verursacht, während die Doppelwelle in Nitrillösungsmitteln durch die starke Komplexierung der Cu(I)-Ionen begründet wird. Der nach der *Luther*schen Regel erhaltene Wert für das experimentell nicht bestimmbare $E_{\frac{1}{2}}$ Cu(II)/0 (+ 1,125 V) paßt gut in das $E_{\frac{1}{2}}/DN$ -Diagramm von *Gutmann* und *Duschek*¹⁴ hinein. Gleiches gilt für das $E_{\frac{1}{2}}$ an der *RPE* bei 0,2 mMol/l für das Ag(I)-Ion. 70 O. Duschek u. a.: Polarographische Untersuchungen in Aceton

Mit Ausnahme von Ni(II) stimmen die polarographischen Werte mit der für AC bekannten DN von 17⁶, ⁸, ⁹, ¹⁰ überein.

Für die Unterstützung der Untersuchung danken wir dem Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (Projekt Nr. 1969).

Literatur

¹ J. F. Coetzee, M. K. McGuire und J. L. Hendrick, J. Physic. Chem. 67, 1814 (1963).

² J. F. Coetzee und W. S. Siao, Inorg. Chem. 2, 14 (1963).

³ O. Gruber, P. Jiru und M. Ralek, Molekularsiebe. VEB Deutscher Verlag der Wissenschaften. 1968.

⁴ V. Gutmann, G. Peychal-Heiling und M. Michlmayer, Inorg. Nucl. Chem. Letters **3**, 501 (1967).

⁵ V. Gutmann und E. Wychera, Inorg. Nucl. Chem. Letters 2, 116 (1966).

⁶ V. Gutmann, Coordination Chemistry in Non-Aqueous Solutions. Wien-New York: Springer. 1968.

⁷ V. Gutmann, Allgem. Prakt. Chem. 21, 116 (1970).

⁸ V. Gutmann, Chemische Funktionslehre. Wien-New York: Springer. 1971.

⁹ U. Mayer und V. Gutmann, Structure and Bonding 12, 118 (1972).

¹⁰ V. Gutmann, Topics in Current Chem. 27, 59 (1972).

¹¹ R. Alexander, A. J. Parker, J. H. Sharp und W. E. Waghorne, J. Amer. Chem. Soc. **94**, 1148 (1972).

¹² O. Duschek und V. Gutmann, Mh. Chem. 104, 990 (1973).

¹³ V. Gutmann, G. Gritzner und R. Schmid, Electrochim. Acta 13, 919 (1968).

¹⁴ V. Gutmann und O. Duschek, Z. anorg. allgem. Chem. 394, 243 (1972).

¹⁵ E. Eberius, Wasserbestimmung mit Karl Fischer-Lösung. Weinheim: Verlag Chemie. 1958.

¹⁶ E. D. Peters und J. L. Jungnickel, Anal. Chem. 27, 450 (1955).

¹⁷ I. M. Kolthoff und J. F. Coetzee, J. Amer. Chem. Soc. 79, 870 (1957).

¹⁸ V. Gutmann und G. Peychal-Heiling, Mh. Chem. 100, 813 (1969).

¹⁹ V. Gutmann und H. Schmidt, wird demnächst veröffentlicht.

²⁰ O. Duschek und V. Gutmann, Mh. Chem. 104, 1259 (1973).

²¹ C. Koenne, Dissert., Techn. Hochschule Wien (1972).

L. Meites, Polarographic Techniques. New York: Interscience. 1965.
 J. Heyrovsky und J. Kuta, Grundlagen der Polarographie. Berlin: Akademie-Verlag. 1965.

Prof. Dr. V. Gutmann Institut für Anorganische Chemie Technische Hochschule Wien Getreidemarkt 9 A-1060 Wien Österreich